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A model of a rigid wheel which rolls without slipping along a viscoelastic rail (beam) lying on a viscoelastic base is considered. 
Since point contact is asmmed between the rail and the wheel, in the steady state (the wheel rolls in the vertical plane at a constant 
velocity) the problem under consideration is similar to that of the vibrations of a beam under the action of a moving load [1]. 
The problem of rolling ihas been treated in different formulations in many pubfieations [2-9]. 

1. M E C H A N I C A L  M O D E L  O F  T H E  S Y S T E M  

Let a rigid wheel and a rail be arranged in the plane OrX11:l. We shall assume that the rail is a beam which undergoes 
pure flexure and lies un a viscoelastic base. We shall specify the kinetic energy and potential energy functional and 
the functional of the dissipative forces in the form 

_ m . . 2  2 J 2 1 b 2 
+Yi )+--0" +- -  J pw" ds T - -~-(x I 2 2 -h 

H lh  
= 271, (kl w''2 + k2w2)ds-  F(t)x I + P(t)y I - M(t)O 
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-/X(dll, w"" +d2 w'2 )ds 

2 

(1.1) 

where m and J are the mass and moment of inertia of the wheel about its axis, xl, Yl, 0 are the coordinates of the 
centre of the wheel at the point O and the angle of its rotation, w(s, t) (s ~ [-b, hi) are the displacements of 
the points of the neut~ral line of the rail along the axis 01Y1, p is the linear density of the rail, dl and d2 are measures 
of the internal friction (a Kelvin-Voight material), g is a small parameter,  kl and k2 are the flexural stiffness of 
the rail and the stiffness of the base, and F, - P  and M are the external forces and moment applied to the wheel 
(Fig. 1); a dot denotes differentiation with respect to time t and a prime denotes differentiation with respect to 
the variable s. 

We shall solve the problem assuming that the curvature of the line of contact of the rail and the wheel (the line 
l 0 is smaller than the curvature of the wheel. Contact between the wheel and the rail is then made at the single 
point K, and the line ,t] and the outer circumference of the wheel of radius r have a common tangent at the point 
of contact. We shah further assume that contact between the wheel and the rail takes place without slipping. 
In the undeformed slate, the neutral line of the rail l0 coincides with the axis OIX1 and the line of contact 11 is 
given by the equation III = h. In the strained state, according to the hypothesis of plane sections, the points of the 
neutral line are detelmined by the vector, Ro = sel + w(s, t)e2, where el and e2 are unit vectors along the axes 
OrX1 and 01I:1, respectively, and points of the line of contact are determined by the vector R1 = (s - h sin ¢)el + 
(w(s ,  t )  + h cos ct)ez (Fig .  1). 

Let the system of coordinates Oxy be rigidly associated with the wheel and let O be the angular coordinate of 
the points of its rim. 'Ilae angle ~0 corresponds to the point of contact K. The angle 0 + 9o is close to 3rd2 and, 
consequently, the angle 0t = 0 + 9o - 3x/2 is small (Fig. 1). The contact conditions at the point K have the form 

s o = x , + ( r + h ) s i n ~ ,  w o = y j - ( r + h ) c o s ¢ ~  (w 0=w(so, t ) )  (1.2) 

Here So is the coordinate of the point of the neutral line corresponding to the point K on the line of contact 11. 
From the contact conditions (1.2) we obtain relations which connect the possible displacements. We shall henceforth 
assume that the angle a is small. These relations then take the form 

5Xl + rl50 = 0, ~Sw 0 = 5Yl + rla50 (rl = r + h )  (1.3) 
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Fig. 1. 

Conditions (1.2) actually mean that a wheel of radius rl rolls along the neutral line 10. We shall also suppose that 
the reaction which oceurs at the point o f  contact K is transferred to the corresponding point of the neutral line 
with coordinate So without the addition of a moment proportional to the small quantity h/r. 

2. T H E  E Q U A T I O N S  O F  M O T I O N .  T H E  S T E A D Y - S T A T E  C O N D I T I O N  

We obtain the equations of motion of the system and the matching conditions at the point of contact from the 
Hamilton-Ostrogradskii variational principle 

1 t'~ b 

~1 (T-r l )d t -  ~ I X(dlW"Sw" +d2w'~w)dsdt+ 
tl t I - b  

+ I [p(t)(~% - ~y, - liar0) + v(t)(~x I + li~i0)]dt = 0 (2.1) 
tl 

where ~t(t), v(t) are Lagrangian multipliers. It follows from the condition for the existence of a potential energy 
functional in (1.1) that the function w(s, t) and its first derivative with respect to s are continuous over the interval 
[--b, b] and, in particular, at the point s = So. On splitting the range of variation of s into two parts: [-b, So] and 
[So, b] and integrating by parts, we find, from relations (2.1), the equations of motion and the matching conditions 
in the form 

mx i ' = F + v ,  ki[w"] 0 + X d l [ w ' ' ] 0 = 0  

m y i ' = - P - P ,  kl[w"']o+xd,[ w .... ]ii=P 

J0" = M -  la~o + vrl, [w] 0 = [w'] 0 = 0 (2.2) 

pw" +klw "~' +)~dl W''r+k2w+)~d2w'=0, s:/:s 0 

Here, If(s, t)]0 = f(So + O, t) - f ( so  - O, t) is the discontinuity in the function when s = So, ~ = rltx. Relations 
(2.2) form a complete system of equations from which the motion of the system can be determined when account 
is taken of the matching equations (1.2), the boundary conditions w(_+, t) = w'(+_ b, t) = 0 and, also, the condition 
of coincidence of the tangents to the wheel and the line of contact 11 at the point K and the condition for rolling 
without slipping. 

We consider the rolling of the wheel without slipping at a constant velocity c when x~ = c,ya = const, 0' -- const, 
w(s, t) = W(~), ~ = s - ct, ~ = const. We shall initially consider small dissipative forces and neglect them by putting 
X = 0. Moreover, by putting b ~, I xl I in the time interval being considered, we replace the boundary conditions 
at s = --.b by the condition w(-_.**, t) = w'(+.~, t) = 0. In the steady state, the neutral line l 0 is independent of time 
in the moving system of coordinates OXlyl, which is gradually displaced at a velocity c along the axis 01X1. In this 
case, we represent relations (2.2) in the form 

F + v = 0 ,  P = - p ,  M+vl  i=la~o, [W"]o=lx /k  , (2.3) 

pc2W" +klW ' '  +k2W=O, [W] 0=[W' ]  0 = [ W ' ]  o = 0  
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since 

Ow(s,t) OW(~) 02w(s,I) 9 O2W(~) O"w(s,t) = OnW(~) 
- -  = - , :  , = c -  ~ s "  ~ "  ~t ~ gt'2 ~ 2 ' 

The discontinuities in the function W(~) and its derivatives in (2.3) are calculated when ~ = ~ .  
The neutral line of the rail is determined in the form (Dn are the roots of the characteristic equation) 

4 (--DC 2 + A / ~ 
W(~)=,,=IX C,,cxp(O,,~), O , = +  2r---- ] ) , A=(p2c4-4klk2) ~ (2.4) 

The roots Dn are equal to _+E_+ito if 0 <~ c < c* and __.i01, -+i(t~2 if c > c* where c* = (4klk2[p2) 1/4. 
The critical velocity c* separates the two domains where the behaviour of the rail is qualitatively different when 

the wheel rolls. This has been noted in a study of the dynamics of a beam with moving loads [1, 10]. In the domain 
c < c*, the functions 

W"" [ClCXp[(E+i°3)~]+'Clexp[(e-i~)~]' ~<~0 Lq) = ~ 
~C z exp[(-e- / to)  k] + C 2 exp[(-e +/to)k], ~ > ~0 

(2.5) 

and W(__.**) = W'(_+**) = 0. Here, Ct and (22 are arbitrary constants and a bar over a symbol denotes at complex 
conjugate quantity. In the domain c > c*, it is impossible to satisfy the conditions at infinity, and the problem has 
to be investigated tak~ag account of dissipative forces (X ;e 0). The case of subcritieal velocities is important in practice 
since the critical velocity is of the order of 1500 km/hour. We merely note that drag occurs when a wheel rolls at 
velocities exceeding the eritieai velocity. 

When account is taken of (2.5), the matching conditions (2.3) have the form 

4 
X D~'Zk ~t =-7--~3. ,  n=0,1,2,3 

k=l /(I 

Z I = Z,_ = C I exp(Dl~o), Z 3 = Z4 = -C2 exp(D3~o) (2.6) 

D I = D"- 2 = e + ito, D3 = D4 = -~ - ito 

From the system of linear equations (2.6) in Zk, we obtain 

ZI+Z2=~II ~, ~=4klE(E2+to2), DIZI+D2Z2=O 

The approximate equation of a circle of radius rl with its centre at the point O in the nei~,hbourhood of its point 
of intersection with the negative part of the axis Oyl has the form 

Yt =Yl -si +~2 / (21i) 

This circle touches the neutral line at ~ = ~ and, consequently 

Yt -r t  + ~ / ( 2 r t )  = Zl +Z2 =~t/~, ~0/rl = DiZl +D2Z2 =0  

On taking account of relation (2.3), we find 

t 0 = 0 ,  ) ' l - l i= -P /~ ,  M-rlF=O 

Steady-state motion with a velocity c is possible if M = rlF, P = const. The neutral line of the rail is defined by 
the equation 

P x ~exp(e~)(tocoso~- esint~), ~ < 0 
W ( ~ ) = - ~ -  [exp(-e~)(tocoso~+esint~),  ~ > 0  

(2.7) 

In the case of motion at a velocity greater than c*, the small dissipative forces are taken into account. The 
characteristic equation takes the form 

c x d  I D 5 - k I D 4 - pc2D 2 + c x d 2 D  - k 2 = 0 

and, for small Z, has a root 
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_ kl . pc3dl 
D.~ - ~ -r 8---~-]2 X + o(X ) 

and the roots +-i031, ++.iah produce the corrections 

Ai = xC(dl(l): "k d 2 ) 
2pc2_4k103 2 +o(x), i=1,2 

Further 

032 =(pc2+ A) / (2k l )  , °)1 <032 

Ai=+xc(d103 4+d2) l (2A) ,  i=1,2; A I > 0 ,  A 2 <0  

Consequently, the neutral line of the strained rail is represented in the form 

(C I exp[(Aj + i03 1 )~] + Ci exp[(At -i031 )~] + C3 exp(Ds~), 

W(~)= C2exp[(A2 +i03:)~]+C.._2cxp[(A2_ito2)~] ' ~>~,, 
(2.8) 

The coefficients Ck in (2.8) are determined from the matching conditions 

[W('0] 0 = 0, n =0,1,2,3; [W(4)]0 =-I . t / (cxd I) (2.9) 

The second derivative of the function W(~) at the point of contact K is continuous since it follows from the 
condition for the existence of the dissipative functional (1.1) that the function W(~) belongs to the Sobolev space 
W~([- b, b]). From conditions (2.9), when (2.8) is taken into account, we obtain a system of five linear equations 
in the quantities Uk (k = 1 . . . . .  5) 

5 
y. D~,U k t.t = ~"~', ~4n, n = 0  ...... 4 

k=] c x t  

UI = U'2 = CI exp[(Ai +/COl )to ], U3 = U4 = -C2 expI(A2 +i032)t0] 

U5=C3exp(Ds~o), DI =D2=Al+/co l ,  D3=D4=A2+i032 

Next, in much the same way as in the subcritical case, we find 

W(~o) = Yl - rl + ~2 = -U3 _ U4 = 2~xc(dlo)2032 +d  2 ) 
2,_  o(x) 

W,(~ )=~LO=_D~U~ _ D 4 U  4 _ [1 +O(x) 
(o)22 - ) 

Since ~t = - P  and o)2 > COl z, then W(~) < 0, but W'(~)  > 0. According to (2.3) 

M - J i F = - P ~ o  = qp2 2 to(x)  
k] (co i - 031 ) 

If we put F = 0, then, for the motion of  the wheel at a velocity c > c*, a moment 

M = q p2 
¼ 4 +o(~), u=c / c*  

2(klk2)/2( u _1) ~ >1 / 
(2.10) 

has to be applied. 
The magnitude of the deflection of the rail at the point of contact 

2xP(dlk9 + dgk I )u to(z) 
(4klk 2) p - ( u - I ) -  

is negative. The deflection tends to zero as u -5 when u --> ** and is equal to zero when Z = 0. When Z "-') 0, relations 
(2.8) are represented in the form 
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P xltO2 sinto,({-{, ,) ,  ~, < {,, 
W(~)= k ,m, to , ( t~- to~)  [o),sinto2(~-~o),  ~ , ,  

The moment (2.10) determines the wave drag and is necessary to maintain the steady motion of the wheel at a 
velocity greater than the critical velocity. It is not equal to zero when there are no dissipative forces. We note that, 
in the case of motion at velocities less than the critical velocity, no forces need be applied. 

3. D I S S I P A T I O N  O F  E N E R G Y  A N D  R E S I S T A N C E  T O  M O T I O N  

We shall consider the case of subcritical velocities (c < c*) and write down a theorem on the change in the total 
mechanical energy in the steady-state case 

d(T + H) /dt  = -2D[w" ] (3.1) 

According to (1.1), the left-hand side of Eq. (3.1) is equal to Mc/rl - Fc and the right-hand side is equal to 
-2c2D[W']. As above, let the motion occur solely under the action of a moment (F = 0). Then, f~om (3.1), we 
obtain 

+ ~  

M =-c, iX I (d, W''2 +d2W':)d~ (3.2) 

The shape of the deformed rail must be found from the solution of the boundary-value problem (2.2). However, 
by taking account of  rite smallness of the dissipation coefficient, Z, this problem may be replaced by problem (2.3), 
when the shape of the deformed rail is determined without taking account of the small dissipative forces. It is obvious 
that the addition of the forces introduces a distortion in the shape of the order of Z and, when the inte~al in (3.2) 
is calculated, the moment of the forces M will be found with an accuracy up to terms of the order of Z2. 

We will calculate the integral on the fight-hand side of (3.2) using formulae (2.7). The calculation is conveniently 
carried out in complex form 

# 
+- p2 o 
I (dl w't'2 +d2W'2)d~ = 8k2E2(o2(e 2 _1.0,32) 2 J (dlf  ''2 +d2f '2)d~ 

.f({) = ~ I(o) + ie) exp[(e +/c0) k] + (o  - is)exp[(E - i(0)~l} (3.3) 

By (2.4), we obtain 

E=[l~_-/(l-u2)] ~ ,  ta)=[I/2~/(l+u2)] ~ ,  82+to2='y,  "y=(k2/kl) ~ 

The dimensionless velocity of the wheel u varies over a range [0,1) in the suberitical case. Further, on evaluating 
the integral in (3.3), by (3.2) we obtain 

M= Zrlp2(dk2(3-2tt2)+d2kl)U 0<~u<l  (3.4) 

8p~k~k2 (l - u 2 )~ ' 

The moment of the resistance to the rolling of the wheel is equal, by definition, to the moment of the active 
forces applied to the wheel with the opposite sign, and the resistance force is equal to the moment of the resistance 
divided by rl. The moment of the active forces is determined by formulae (2.1) and (3.4), which no longer hold in 
the resonance domain since, on approaching the critical velocity c*, the quantity W'(~)  = ~0/rl becomes large and 
the hypotheses incorporated into the model are violated. 

It should be pointed out that the resistance to the rolling of the wheel in the low-velocity domain (u < 1) is 
proportional to the dissipative forces and disappears if these forces are equal to zero. When the wheel rolls at 
velocities exceeding the critical velocities, the resistance to rolling has a wavy form, and its dependence on the 
dissipative force.s does not appear in the first approximation (there are no terms of the order of Z). 

The dependence of the displacement of the wheel on the parameters of the steady-state motion 

J P '~ -  ~ O(Z), 0 <~ u < I 

Y , - ' i  = 4k~k~4( l -"z )~  (3.5) 
rip2 +O(z), u > 1 

4klk2 (u 2 - I) 

is also of interest. 
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It is clear that formulae (3.5) cannot be used at velocities close to resonance (u = 1) and also in the case of 
large loads when the curvature of the rail at the point of contact is greater than r1-1, which contradicts the hypotheses 
incorporated in the model. 

In concluding, we note that, as the wheel rolls along the rail, the points of the rail execute oscillatory motions 
with frequencies c o  in the subcritical case (c < c*) and co01, ctt~ when the motion occurs at velocities greater than 
the critical velocities (c > c*) since w(s, t) = W(s - ct). This leads to vibrations of the air with the above-mentioned 
frequencies which should be treated as regular noise when a wheel rolls along a deformable rail. 
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